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il Elementary Fluxtubes and Coronal Heating

e Introduction

e Magnetostatic model of network element

e Hydrogen ionization
e Partial frequency Redistribution (PRD) in Lyman-« is important




Conclusion

Multi-wavelength Stokes Spectroscopy
and




Transition from Photosphere to Corona

e Difficult to observe

e Highly structured in three-dimensions
e Transparent in almost all diagnostics, in particular those accessible
from the ground
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e How the structure structure of the small-scale solar magnetic field
changes when we progress from the photosphere through the
chromosphere up to the corona
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To solve the problem of Coronal heating:

e How the structure structure of the small-scale solar magnetic field
changes when we progress from the photosphere through the
chromosphere up to the corona

e How is energy that gives rise to coronal heating channelled? Where are
heated to begin with

e |s the field braided? Is energy transported via waves, and if so what
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H-a is important diagnostic
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e Double-peaked
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e Large velocities and steep flanks
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Two-dimensional network model

Magnetostatic models together with Aad van Ballegooijen (CfA)
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Two-dimensional network model (2)

Pressure balance with the surroundings below the canopy:

Pint(2) + Bine(2) /8T = Pexs(2)




Two-dimensional network model (2)

Pressure balance with the surroundings below the canopy:

Pint(2) + Bing (2)/87 = pext(2)

Solution by minimization of the Lagrangian:

Zt R(z) 2 24




Two-dimensional network model (2)

Pressure balance with the surroundings below the canopy:

Pint(2) + Bing (2)/87 = pext(2)

/Solution by minimization of the Lagrangian:




Network Model
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Hydrogen ionization — Balmer continuum
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Hydrogen Lyman—qa profiles (quiet-Sun)
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Hydrogen Lyman—qa profiles (quiet-Sun)
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Network Structure (Ca 1)




Network Structure (Ca 1)
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Network Structure (Ca 1)
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Network Structure (Ca 1)
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H-« profile in network
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High resolution Observations
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Conclusions

e To figure out how coronal loops are heated we need to discover
e how they are connected to the underlying photosphere

e how energy flows from below, and in what form

e We need to develop reliable diagnostics. Understand the information
encoded in H-«
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Where are Coronal Loops Heated?
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Hydrogen Lyman-a Contribution Function
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